Population genetic structure and connectivity of deep‐sea stony corals (Order Scleractinia) in the New Zealand region: Implications for the conservation and management of vulnerable marine ecosystems
نویسندگان
چکیده
Deep-sea stony corals, which can be fragile, long-lived, late to mature and habitat-forming, are defined as vulnerable marine ecosystem indicator taxa. Under United Nations resolutions, these corals require protection from human disturbance such as fishing. To better understand the vulnerability of stony corals (Goniocorella dumosa, Madrepora oculata, Solenosmilia variabilis) to disturbance within the New Zealand region and to guide marine protected area design, genetic structure and connectivity were determined using microsatellite loci and DNA sequencing. Analyses compared population genetic differentiation between two biogeographic provinces, amongst three subregions (north-central-south) and amongst geomorphic features. Extensive population genetic differentiation was revealed by microsatellite variation, whilst DNA sequencing revealed very little differentiation. For G. dumosa, genetic differentiation existed amongst regions and geomorphic features, but not between provinces. For M. oculata, only a north-central-south regional structure was observed. For S. variabilis, genetic differentiation was observed between provinces, amongst regions and amongst geomorphic features. Populations on the Kermadec Ridge were genetically different from Chatham Rise populations for all three species. A significant isolation-by-depth pattern was observed for both marker types in G. dumosa and also in ITS of M. oculata. An isolation-by-distance pattern was revealed for microsatellite variation in S. variabilis. Medium to high levels of self-recruitment were detected in all geomorphic populations, and rates and routes of genetic connectivity were species-specific. These patterns of population genetic structure and connectivity at a range of spatial scales indicate that flexible spatial management approaches are required for the conservation of deep-sea corals around New Zealand.
منابع مشابه
Patterns of Deep-Sea Genetic Connectivity in the New Zealand Region: Implications for Management of Benthic Ecosystems
Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea pop...
متن کاملA Comparative Analysis of Genetic Diversity and Structure of Whooper Swan (Cygnus cygnus): A New Considerable Established Population in Iran
New wintering populations of Whooper Swan have been recently reported from west Asia, a lack of information about the population and its origin. The understanding the genetic structure and connectivity are crucial for determining strategies of management for its conservation programs. The samples were collected from two populations in northern Iran, Finland, Sweden, and Iceland, where with larg...
متن کاملIsolation and characterization of microsatellite loci in the Persian sturgeon (Acipenser persicus, Borodine, 1897) and cross-species amplification in four commercial sturgeons from the Caspian Sea
In order to have a sustainable management on Persian sturgeon as a highly commercial species in the South Caspian Sea, we need to identify its population structure and the level as well as its conservation status in their natural habitat. To develop a conservation program for this all Caspian Sea' sturgeon species it requires knowledge of its genetic diversity using reliable molecular marker t...
متن کاملGenetic structure of Caspian Sea southern area honeybee populations, based on microsatellite polymorphism
Genetic diversity is a key component of ecosystems. The aim of the present study was to evaluate the genetic diversity of Iranian native honeybee colonies (Apis mellifera meda L.) located in the northern region. Colonies from 24 locations have been analyzed using microsatellite markers. Samples were collected from Caspian Sea southern area (north of Iran). Six microsatellite markers (A28, A29, ...
متن کاملDifferences in Genetic Structure among Fagus orientalis Lipsky (Oriental Beech) Populations under Different Management Conditions: Implications for in situ Gene Conservation
Resource sustainability requires a thorough understanding of the influence of forest management programs on the conservation of genetic diversity in tree populations. To observe how differences in forest management affect the genetic structure of Fagus orientalis Lipsky (oriental beech), we evaluated thirteen beech sites across Hyrcanian forests, based on six microsatellite loci. Significant di...
متن کامل